人类对外界的太空一直存在好奇,我们能够在空中飞行,或者潜入最深的洋底,我们甚至还登上了月球。然而有一个地方我们却从未能抵达,那就是地球的核心。对于超越这一深度下的地球内部情况,我们应该是一无所知的。然而事实却是:我们对于地球内部深处情况的了解是相当丰富的。我们甚至大致了解地球内部在过去数十亿年历史期间的演化过程——所有这一切都是在没有任何一点实际样品的情况下做到的。这一点可能会让很多人觉得不可思议,那么现在精彩奇闻的小编就来介绍科学家们是如何做到这一点的:

  地球核心之密度估算

  英国剑桥大学的西蒙·雷德费恩指出,开始这一切的一种好方法就是试着想一想地球的质量有多大。我们可以通过地球对其地表物体施加的引力作用大小来计算出地球的实际质量。计算的结果显示地球的质量约为5.9乘以10的21次方吨,也就是说59后面还有20个0。如果光从地球表面的物质密度看,地球质量无论如何不应该会这么大。

  雷德费恩表示:“地球表面物质的密度远低于地球物质平均密度,这就告诉我们在地球内部存在着密度更高的物质。这是第一点。简单来说,这也就意味着地球质量的绝大部分必定是存在于靠近地球核心的区域。接下来,我们就要问一个问题:究竟是什么物质组成了地球的内核?”

  答案应当是显而易见的:地核的主体成分应该是铁。根据目前的计算结果,科学家们一般认为地核的成分中大约有80%是铁,但更加精确的结果则存在一些争议。支持这一结论的一项重要证据是:铁大量存在于我们周围的宇宙中,事实上铁是银河系中丰度排名前十位的元素之一,同时铁也是陨石中非常普遍的成分。

  考虑到铁的这种普遍性,我们会非常容易地注意到在地球表面,相对而言铁是比较少见的,低于我们的预期。据此科学家们提出一个设想,那就是大约在45亿年前地球形成之时,大量地球上的铁都逐渐向下,沉降到地核里去了。

  那里是地球大部分质量所在的地方,那里也必然是大部分的铁所聚集的地方。在正常条件下,铁是一种密度相对较大的元素,而在地核的巨大压力条件下,铁甚至还会在高压下遭受挤压并形成密度更高的形态,因此如果将地核的因素考虑在内,便可以解释地球表面全部的铁元素缺失之谜。

  地球核心之铁的沉降

  但这里似乎还有一个问题。那些沉降到地核里的铁是如何实现这种沉降的?毫无疑问,铁元素受到了重力影响,从而向着地球内部中心沉降。但一开始人们还难以描述这一过程是如何具体实现的。

  地球的其他部分的主体成分是被称作“硅酸盐”的岩石物质,而呈现熔融状态的铁必须想办法穿过这些硅酸盐,从而抵达地核。总体来看,这就有点像是放在油腻表面上的水,铁同样形成了较小的“液滴”——它们相互聚集,形成局部性的小型富集区,而不是向周围扩散和流动。

  2013年,美国斯坦福大学的毛礼文和她的同事们找到了一个可能的答案。她们想要弄清,当铁与硅酸盐一同暴露于极端压力环境时将会发生什么——而这正是地球深部的环境条件。

  通过使用金刚石设备挤压的方式产生极端压力条件,她们可以发现可以让熔融状态的铁穿过硅酸盐物质。毛礼文表示:“压力实际上改变了铁与硅酸盐之间相互作用的性质。在极端高压下,一种‘熔融网络’形成了。”这一发现暗示铁元素很有可能是在数以百万年计的漫长时间里缓慢地通过这种挤压方式逐渐穿过地球上厚厚的岩层并最终抵达地核区域的。

  地球核心之地震学研究

  现在,你可能会开始好奇我们究竟是如何得知地核的大小的。科学家们根据什么判断地核是从我们脚底下大约3000公里开始的?对此,答案只需要一个词:地震学。

  当地震发生时,地震波会穿过地球内部。地震学家会记录这些波的地球内部的传播情况。这就有点像是我们使用一个超级大锤子狠狠敲击了地球的一端并趴在另一端聆听产生的声音。雷德费恩表示:“1960年代在智利发生了一次强烈地震,那次地震中得到了大量数据。分布在全球各地的地震台都接收到了那场地震产生的地震波。”

  根据地震波在地球内部的传播路径与其他特征,我们从地球的另一端“倾听”时所能听到的“声音”也将是不同的。在地震学研究的初期科学家们便意识到地震波中有某些震动似乎缺失了。当地球的一侧发生地震时,科学家们在另一侧未能监测到一种被称为“横波”,也即S波信号的抵达。原因很简单。这种横波只能在固态物质内传播而无法穿过液态物质。

  很显然,横波在传播的过程中必定在地核区域遭遇到了液态区域。通过对S波传播路径的分析,科学家们判定在地下大约3000公里处,物质呈现为液态。这就表明整个地核都是处于熔融状态的。但很快,地震学家们又有了另外的发现。在1930年代,一名名叫英奇雷曼的女性地震学家发现,地震波中的另外一种波,即纵波(P波)出人意料的穿越了地球内核并且可以在地球的另一端监测到其信号。她于是提出了一个让人大吃一惊的崭新理论:地球内核分为两层。从地下大约5000公里开始的内核是固态的,而其外部直到3000公里深度上的外核才是液态的。